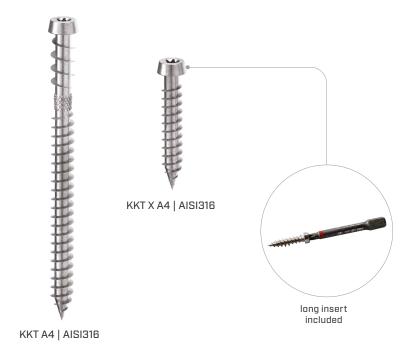
| KKT A4 | AISI316

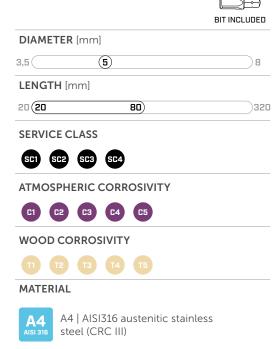
CE

CONE-SHAPED CONCEALED HEAD SCREW

AGGRESSIVE ENVIRONMENTS

A4 | AISI316 stainless steel version ideal for very aggressive environments, for acidic, chemically treated wood and very high internal moisture (T5). KKT X version with short length and long bit for use with clips.


COUNTER THREAD


The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.

TRIANGULAR BODY

The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional timber pull-through.

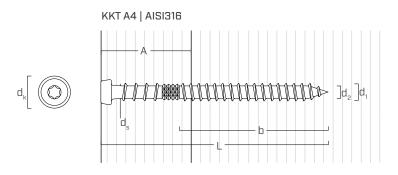
FIELDS OF USE

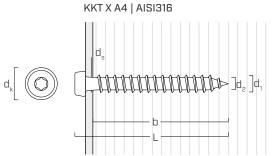
Outdoor use in highly aggressive environments. Wooden boards with density of $< 550 \text{ kg/m}^3$ (without pre-drill) and $< 880 \text{ kg/m}^3$ (with pre-drill). WPC boards (with pre-drill).

■ CODES AND DIMENSIONS

KKT A4 | AISI316

	d_1	CODE	L	b	Α	pcs
	[mm]		[mm]	[mm]	[mm]	
		KKT540A4	43	25	16	200
		KKT550A4	53	35	18	200
	5 TX 20	KKT560A4	60	40	20	200
	17.20	KKT570A4	70	50	25	100
		KKT580A4	80	53	30	100


KKT X A4 | AISI316 - fully threaded screw


d_1	CODE	L	b	Α	pcs
[mm]		[mm]	[mm]	[mm]	
	KKTX520A4(*)	20	16	4	200
5	KKTX525A4(*)	25	21	4	200
TX 20	KKTX530A4(*)	30	26	4	200
	KKTX540A4	40	36	4	100
	[mm]	[mm] KKTX520A4(*) 5 KKTX525A4(*) TX 20 KKTX530A4(*)	[mm] [mm]	[mm] [mm] [mm]	[mm] [mm] [mm] [mm] [mm]

^(*) Not holding CE marking.

LONG BIT INCLUDED code TX2050

■ GEOMETRY AND MECHANICAL CHARACTERISTICS

GEOMETRY

Nominal diameter	d_1	[mm]	5,1
Head diameter	d_K	[mm]	6,75
Thread diameter	d_2	[mm]	3,40
Shank diameter	d_S	[mm]	4,05
Pre-drilling hole diameter ⁽¹⁾	d_V	[mm]	3,0 - 4,0

 $^{^{(1)}}$ For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS

Nominal diameter	d_1	[mm]	5,1
Tensile strength	$f_{tens,k}$	[kN]	7,8
Yield moment	$M_{y,k}$	[Nm]	5,8
Withdrawal resistance parameter	f _{ax,k}	[N/mm ²]	13,7
Associated density	ρ_a	[kg/m ³]	350
Head-pull-through parameter	f _{head,k}	[N/mm ²]	23,8
Associated density	ρ_{a}	[kg/m ³]	350

KKT X

Ideal for fastening standard Rothoblaas clips (TVM, TERRALOCK) in outdoor environments. Long bit included in each package.

MINIMUM DISTANCES FOR SHEAR LOADS

screws inserted WITHOUT pre-drilled hole

 $\rho_k \leq 420 \; kg/m^3$

d	[mm]		5
a ₁	[mm]	12·d	60
a ₂	[mm]	5·d	25
$a_{3,t}$	[mm]	1 5⋅d	75
a _{3,c}	[mm]	10 ⋅d	50
a _{4,t}	[mm]	5·d	25
a _{4,c}	[mm]	5·d	25

d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	5·d	25
$a_{3,t}$	[mm]	10·d	50
a _{3,c}	[mm]	10·d	50
$a_{4,t}$	[mm]	10·d	50
$a_{4,c}$	[mm]	5·d	25

d = screw diameter

screws inserted WITHOUT pre-drilled hole

 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$

α=90°

5

35

35

75

75

60

35

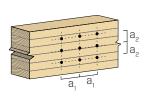
d	[mm]		5
a ₁	[mm]	15·d	75
a ₂	[mm]	7⋅d	35
$a_{3,t}$	[mm]	20·d	100
a _{3,c}	[mm]	1 5⋅d	75
$a_{4,t}$	[mm]	7⋅d	35
a _{4,c}	[mm]	7∙d	35

 $[\]alpha$ = load-to-grain angle

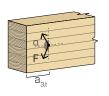
d = screw diameter

screws inserted WITH pre-drilled hole

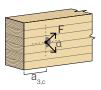
\xrightarrow{F}	


α=90°

d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	3·d	15
$a_{3,t}$	[mm]	12·d	60
a _{3,c}	[mm]	7⋅d	35
a _{4,t}	[mm]	3·d	15
a _{4,c}	[mm]	3·d	15


d	[mm]		5
a ₁	[mm]	4·d	20
a ₂	[mm]	4·d	20
$a_{3,t}$	[mm]	7⋅d	35
$a_{3,c}$	[mm]	7⋅d	35
$a_{4,t}$	[mm]	7·d	35
a _{4,c}	[mm]	3·d	15

 α = load-to-grain angle


d = screw diameter

stressed end $-90^{\circ} < \alpha < 90^{\circ}$

unloaded end 90° < α < 270°

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

7∙d

7∙d

15·d

15·d

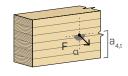
12·d

7·d

d

 a_1

 a_2


 $a_{3,t}$

 $a_{3,c}$

 $a_{4,t}$

 $a_{4,c}$

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

NOTES

- The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = screw diameter.
- The minimum spacing for all steel-to-timber connections (a $_1$, a $_2$) can be multiplied by a coefficient of 0,7.
- The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.

 $[\]alpha$ = load-to-grain angle

STRUCTURAL VALUES

K	KKT A4 AISI316			SHE	EAR	TENSION		
	geometry		netry timber-to-timber without pre-drilling hole		timber-to-timber with pre-drilling hole	thread withdrawal	head pull-through including upper thread withdrawal	
			A					
d_1	L	b	Α	R _{V,k}	$R_{V,k}$	R _{ax,k}	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	43	25	16	1,13	1,35	1,98	1,25	
	53	35	18	1,16	1,40	2,77	1,25	
5	60	40	20	1,19	1,46	3,17	1,25	
	70	50	25	1,41	1,77	3,96	1,25	
	80	53	30	1,59	2,00	4,20	1,25	

K	KKT X A4 AISI316			SHE	TENSION		
	geometry			steel-to-timber thin plate		steel-to-timber intermediate plate	thread withdrawal
	S _{PLATE}		□ S _{PLATE}	JS _{PLATE}			
d_1	L	b	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[kN]
	20	16		0,64		0,74	1,27
-	25	21	4.5	0,82	3	0,92	1,66
5	30	26	1,5	0,99	3	1,10	2,06
	40	36		1,34		1,48	2,85

GENERAL PRINCIPLES

- Characteristic values according to EN 1995:2014.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot K_{mod}}{V_{ii}}$$

The coefficients $\gamma_{\mbox{\scriptsize M}}$ and $k_{\mbox{\scriptsize mod}}$ should be taken according to the current regulations used for the calculation.

- Mechanical strength values and screw geometry comply with CE marking according to EN 14592.
- Dimensioning and verification of timber elements and steel plates must be carried out separately.
- The screws must be positioned in accordance with the minimum distances.
- The KKT A4 screws with double thread are mainly used for timber-to-timber joints.
- The KKT X total thread screws are mainly used for steel plates (e.g. TER-RALOCK patio system).

NOTES

- The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
- The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread.
- The characteristic shear strengths are evaluated considering the case of thin plate (S_{PLATE} \leq 0,5 d₁) and intermediate plate (0,5 d₁ < S_{PLATE} < d₁).
- In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
- For the calculation process a timber characteristic density ρ_k = 420 kg/m 3 has been considered.